Try free
7 min read Guide 854 of 877

Event Sourcing Patterns and Implementation

Event sourcing is a powerful architectural pattern that stores all changes to application state as a sequence of events, enabling reliable audit trails, temporal queries, and system reconstruction. This approach provides superior data consistency and debugging capabilities compared to traditional CRUD operations.

Core Event Sourcing Concepts

Event Store Architecture

The event store is the central component that persists all domain events:

Event Structure:

{
  "eventId": "550e8400-e29b-41d4-a716-446655440000",
  "eventType": "OrderPlaced",
  "aggregateId": "order-123",
  "aggregateType": "Order",
  "eventVersion": 1,
  "timestamp": "2024-01-15T10:30:00Z",
  "payload": {
    "customerId": "cust-456",
    "items": [
      {"productId": "prod-789", "quantity": 2, "price": 29.99}
    ],
    "totalAmount": 59.98
  },
  "metadata": {
    "userId": "user-123",
    "correlationId": "req-abc-123",
    "causationId": "cmd-place-order-456"
  }
}

Event Store Operations:

Append Event ──► Event Store ──► Event Stream
Read Events ──► Event Store ──► Rebuild State

Aggregate Pattern Integration

Aggregates in event sourcing maintain state through event application:

Aggregate State Management:

class OrderAggregate {
  private state: OrderState;
  private uncommittedEvents: DomainEvent[] = [];

  apply(event: DomainEvent): void {
    this.state = this.applyEvent(this.state, event);
    this.uncommittedEvents.push(event);
  }

  private applyEvent(state: OrderState, event: DomainEvent): OrderState {
    switch (event.eventType) {
      case 'OrderPlaced':
        return { ...state, status: 'PLACED', items: event.payload.items };
      case 'OrderShipped':
        return { ...state, status: 'SHIPPED', shippedAt: event.timestamp };
      default:
        return state;
    }
  }
}

Event Sourcing Patterns

Event Replay and Snapshots

Event Replay Process:

Event Stream: [E1, E2, E3, ..., E1000]
Snapshot: State at E500
Replay: Apply E501 to E1000 to current state

Snapshot Strategy:

interface Snapshot {
  aggregateId: string;
  version: number;
  state: AggregateState;
  timestamp: Date;
}

class SnapshotStore {
  async save(snapshot: Snapshot): Promise<void> {
    // Persist snapshot for faster loading
  }

  async load(aggregateId: string): Promise<Snapshot | null> {
    // Load most recent snapshot
  }
}

Event Versioning and Schema Evolution

Upcasting Pattern:

interface EventUpcaster {
  canUpcast(eventType: string, fromVersion: number): boolean;
  upcast(event: StoredEvent): StoredEvent;
}

class OrderEventUpcaster implements EventUpcaster {
  canUpcast(eventType: string, fromVersion: number): boolean {
    return eventType === 'OrderPlaced' && fromVersion === 1;
  }

  upcast(event: StoredEvent): StoredEvent {
    if (event.payload.totalAmount === undefined) {
      // Calculate total from items if missing
      const total = event.payload.items.reduce(
        (sum, item) => sum + (item.price * item.quantity), 0
      );
      return {
        ...event,
        payload: { ...event.payload, totalAmount: total }
      };
    }
    return event;
  }
}

CQRS Integration

Command Query Responsibility Segregation:

Write Side (Commands)          Read Side (Queries)
    │                               │
    ▼                               ▼
Event Store ──► Project Events ──► Read Models
    ▲                               │
    └───────────────────────────────┘
            Eventual Consistency

Read Model Projection:

class OrderReadModel {
  private orders: Map<string, OrderView> = new Map();

  project(event: DomainEvent): void {
    switch (event.eventType) {
      case 'OrderPlaced':
        this.orders.set(event.aggregateId, {
          id: event.aggregateId,
          customerId: event.payload.customerId,
          status: 'PLACED',
          totalAmount: event.payload.totalAmount,
          placedAt: event.timestamp
        });
        break;
      case 'OrderShipped':
        const order = this.orders.get(event.aggregateId);
        if (order) {
          order.status = 'SHIPPED';
          order.shippedAt = event.timestamp;
        }
        break;
    }
  }
}

Eventual Consistency Management

Saga Pattern for Distributed Transactions

Orchestration-Based Saga:

Order Service ──► Payment Service ──► Inventory Service
     │                    │                    │
     └─ OrderPlaced ──────┼─ PaymentProcessed ─┘
                          │
                          └─ PaymentFailed (compensate)

Choreography-Based Saga:

Order Service ──► OrderPlaced Event ──► Payment Service
                                                │
                                                ▼
                                     PaymentProcessed Event ──► Inventory Service

Eventual Consistency Patterns

Read Repair:

Client Request ──► Stale Data Detected ──► Background Update
     │                                         │
     └─────────────────────────────────────────┘
                  Return current data

Write-Ahead Logging:

Write Operation ──► Event Store ──► Background Projection
     │                      │               │
     └──────────────────────┼───────────────┘
            Immediate ACK       Eventual consistency

Performance Optimization

Event Store Indexing

Indexing Strategies:

  • Aggregate ID Index: Fast lookup of events for specific aggregates
  • Event Type Index: Query events by type across aggregates
  • Timestamp Index: Time-based event queries
  • Correlation ID Index: Trace requests across services

Composite Indexes:

-- For efficient event stream queries
CREATE INDEX idx_event_stream
ON events (aggregate_type, aggregate_id, version);

-- For temporal queries
CREATE INDEX idx_event_time
ON events (event_type, timestamp DESC);

Caching Strategies

Event Cache:

Event Store ──► Event Cache ──► Application
     ▲              │
     └──────────────┘
     Cache Invalidation

Snapshot Cache:

Aggregate Loader ──► Snapshot Cache ──► Rebuild from Events
                        │
                        └─► Cache Miss → Load from Store

Error Handling and Recovery

Event Processing Reliability

Idempotent Event Handlers:

class IdempotentEventHandler {
  private processedEvents: Set<string> = new Set();

  async handle(event: DomainEvent): Promise<void> {
    if (this.processedEvents.has(event.eventId)) {
      return; // Already processed
    }

    try {
      await this.processEvent(event);
      this.processedEvents.add(event.eventId);
    } catch (error) {
      // Log error and retry logic
      throw error;
    }
  }
}

Dead Letter Queue Pattern

Failed Event Handling:

Event Processor ──► Success ──► Continue
     │
     └─► Failure ──► Dead Letter Queue ──► Manual Review

Testing Event-Sourced Systems

Event-Based Testing

Given-When-Then Pattern:

describe('Order Aggregate', () => {
  it('should handle order placement', () => {
    // Given
    const order = new OrderAggregate();

    // When
    order.placeOrder({
      customerId: 'cust-123',
      items: [{ productId: 'prod-456', quantity: 1 }]
    });

    // Then
    expect(order.getUncommittedEvents()).toContainEqual(
      expect.objectContaining({
        eventType: 'OrderPlaced',
        payload: expect.objectContaining({
          customerId: 'cust-123'
        })
      })
    );
  });
});

Event Stream Testing

Event Stream Verification:

it('should maintain event order', async () => {
  const eventStore = new InMemoryEventStore();

  // Append events
  await eventStore.append([
    { eventId: '1', aggregateId: 'order-1', eventType: 'Created' },
    { eventId: '2', aggregateId: 'order-1', eventType: 'Updated' },
    { eventId: '3', aggregateId: 'order-1', eventType: 'Shipped' }
  ]);

  // Verify order
  const events = await eventStore.getEvents('order-1');
  expect(events.map(e => e.eventType)).toEqual([
    'Created', 'Updated', 'Shipped'
  ]);
});

Monitoring and Observability

Event Processing Metrics

Key Metrics to Track:

  • Event processing latency
  • Event processing throughput
  • Error rates by event type
  • Aggregate rebuild times
  • Snapshot frequency and size

Monitoring Dashboard:

Event Processing Health:
├── Events/sec: 1,250
├── Avg Latency: 45ms
├── Error Rate: 0.1%
├── Dead Letters: 3
└── Snapshots Created: 150/day

Anti-Patterns and Pitfalls

Common Mistakes

Mutable Events:

❌ Modifying event payload after creation
✅ Immutable events with new versions

Large Event Payloads:

❌ Storing entire objects in events
✅ Reference IDs with separate data storage

Synchronous Event Processing:

❌ Blocking on event processing
✅ Asynchronous event handling

GitScrum Integration

Event-Driven Task Management

Event Sourcing for Tasks:

  • Track all task state changes as events
  • Enable task history reconstruction
  • Support temporal queries for project analytics

Audit Trail Implementation:

  • Complete history of task modifications
  • User attribution for all changes
  • Compliance reporting capabilities

Workflow Automation

Event-Driven Workflows:

Task Created ──► Assign Reviewer ──► Code Review ──► Merge
     │                │                     │          │
     └────────────────┼─────────────────────┼──────────┘
              Event Bus for Coordination