5 min read • Guide 510 of 877
How to Manage Performance Optimization Projects
Performance optimization requires systematic measurement, prioritization based on impact, and careful tracking of improvements. GitScrum's effort tracking, milestone features, and metrics visualization help teams organize optimization work, measure progress against baselines, and communicate wins to stakeholders effectively.
Performance Project Phases
| Phase | Activities | Deliverables |
|---|---|---|
| Baseline | Measure current state | Performance dashboard |
| Analysis | Profile, identify bottlenecks | Prioritized improvement list |
| Quick Wins | Low-effort, high-impact fixes | Immediate improvements |
| Systematic | Architectural improvements | Sustained performance gains |
| Monitoring | Continuous tracking | Performance regression alerts |
Performance Project Structure
PERFORMANCE OPTIMIZATION EPIC
Epic: API Performance Improvement Q1
Phase 1: Baseline & Analysis
├── Establish performance baseline
│ └── Document current P50, P95, P99 latencies
├── Set up performance monitoring
│ └── APM integration, dashboards
├── Profile production workload
│ └── Identify top 10 slow endpoints
└── Create prioritized improvement backlog
Phase 2: Quick Wins (Week 1-2)
├── Add missing database indexes
├── Optimize N+1 query patterns
├── Enable response compression
├── Add HTTP caching headers
└── Configure connection pooling
Phase 3: Systematic Improvements (Week 3-6)
├── Implement query result caching
├── Optimize slow report queries
├── Add background job processing
├── Implement pagination for large datasets
└── Database query optimization
Phase 4: Monitoring & Prevention
├── Set up performance budgets
├── Add performance regression tests
├── Configure alerting thresholds
└── Document performance best practices
Bottleneck Prioritization
PERFORMANCE IMPROVEMENT PRIORITIZATION
IMPACT × EFFORT MATRIX
High Impact
│
Quick │ Strategic
Wins │ Investments
★★★★★ │ ★★★★
Do First │ Plan Carefully
│
─────────────────────────────────────
│
Maybe │ Avoid
Later │ (for now)
★★ │ ★
│
Low Impact
SCORING EACH IMPROVEMENT:
┌─────────────────────────────────────────────────┐
│ Improvement Impact Effort Priority │
│ ───────────────────────────────────────────── │
│ Add order_id index 5 1 5 ★★★★★ │
│ Fix N+1 in users 4 2 4 ★★★★ │
│ Implement caching 5 4 3 ★★★ │
│ Optimize reports 3 5 2 ★★ │
│ Rewrite search 4 5 2 ★★ │
└─────────────────────────────────────────────────┘
Impact Factors:
• Request volume affected
• Current latency (P95)
• User-facing vs internal
• Revenue impact
Task Template for Performance Work
PERFORMANCE IMPROVEMENT TASK
┌─────────────────────────────────────────────────┐
│ Title: Optimize user list API endpoint │
│ Labels: [performance] [database] [api] │
│ │
│ CURRENT STATE: │
│ Endpoint: GET /api/users │
│ P50: 450ms | P95: 1200ms | P99: 3500ms │
│ Requests/day: 45,000 │
│ │
│ ROOT CAUSE: │
│ • N+1 query loading user preferences │
│ • Missing index on organization_id │
│ • No pagination, loading all users │
│ │
│ PROPOSED SOLUTION: │
│ 1. Add eager loading for preferences │
│ 2. Add index on organization_id │
│ 3. Implement cursor pagination │
│ │
│ TARGET STATE: │
│ P50: <100ms | P95: <300ms | P99: <500ms │
│ │
│ VALIDATION: │
│ • Run load test before/after │
│ • Compare production metrics 24h post-deploy │
│ • Verify no regression in other endpoints │
│ │
│ RESULT: (filled after completion) │
│ P50: 85ms | P95: 210ms | P99: 380ms │
│ Improvement: 82% at P95 │
└─────────────────────────────────────────────────┘
Performance Budget
PERFORMANCE BUDGET TRACKING
API LATENCY BUDGET:
┌─────────────────────────────────────────────────┐
│ Metric Budget Current Status │
│ ───────────────────────────────────────────── │
│ P50 response 100ms 85ms ✓ Good │
│ P95 response 500ms 420ms ✓ Good │
│ P99 response 1000ms 980ms ⚠ Warning │
│ Error rate 0.1% 0.08% ✓ Good │
└─────────────────────────────────────────────────┘
FRONTEND BUDGET:
┌─────────────────────────────────────────────────┐
│ Metric Budget Current Status │
│ ───────────────────────────────────────────── │
│ LCP 2.5s 2.1s ✓ Good │
│ FID 100ms 75ms ✓ Good │
│ CLS 0.1 0.08 ✓ Good │
│ Bundle size 500KB 480KB ✓ Good │
│ Time to interactive 3.5s 3.2s ✓ Good │
└─────────────────────────────────────────────────┘
ALERTING RULES:
┌─────────────────────────────────────────────────┐
│ Warning: Metric > 80% of budget │
│ Critical: Metric > 100% of budget │
│ │
│ Action: Block deployment if critical │
│ Investigate if warning │
└─────────────────────────────────────────────────┘
Best Practices
- Measure before optimizing with real baselines
- Profile in production or production-like environment
- Track before/after for every change
- Start with quick wins to build momentum
- Set performance budgets with alerts
- Add to CI/CD for regression prevention
- Document improvements for knowledge sharing
- Celebrate wins with metrics visibility
Anti-Patterns
✗ Optimizing without measuring
✗ Premature optimization of non-bottlenecks
✗ One big optimization vs incremental
✗ No validation after changes
✗ Ignoring P95/P99 (only looking at averages)
✗ No ongoing monitoring post-project