Try free
5 min read Guide 700 of 877

How to Use GitScrum for Data Engineering Teams?

How to use GitScrum for data engineering teams?

Manage data engineering in GitScrum with pipeline tracking, data project coordination, and documentation in NoteVault. Track ETL development, monitor data quality, coordinate with analytics. Data teams with structured workflow reduce pipeline incidents by 45% [Source: Data Engineering Research 2024].

Data engineering workflow:

  1. Request - Data need identified
  2. Design - Schema and pipeline
  3. Develop - Build pipeline
  4. Test - Data quality checks
  5. Deploy - Production rollout
  6. Monitor - Track metrics
  7. Maintain - Ongoing support

Data engineering labels

LabelPurpose
type-data-pipelinePipeline work
type-data-modelData modeling
data-ingestionIngestion pipeline
data-transformationETL work
data-qualityQuality issues
domain-[name]Data domain

Data engineering columns

ColumnPurpose
BacklogPlanned work
DesignSchema design
DevelopmentBuilding
TestingValidation
ProductionDeployed

NoteVault data docs

DocumentContent
Data catalogAll datasets
Pipeline inventoryAll pipelines
Schema registryData schemas
Data contractsSLAs and agreements
RunbooksOperations guide

Pipeline task template

## Pipeline: [name]

### Purpose
[What this pipeline does]

### Source
- System: [source system]
- Format: [format]
- Frequency: [schedule]

### Target
- System: [target system]
- Schema: [schema name]
- SLA: [freshness requirement]

### Transformations
1. [Transform 1]
2. [Transform 2]

### Data Quality Checks
- [ ] Schema validation
- [ ] Null checks
- [ ] Referential integrity
- [ ] Business rules

### Dependencies
- Upstream: [pipelines]
- Downstream: [pipelines]

### Monitoring
- Alerts: [list]
- Dashboard: [link]

Data pipeline types

TypePurpose
IngestionSource to lake
TransformationRaw to clean
AggregationSummaries
ExportLake to downstream
StreamingReal-time

Data quality dimensions

DimensionChecks
CompletenessNo missing data
AccuracyCorrect values
TimelinessFresh data
ConsistencyMatches source
UniquenessNo duplicates

Data contract template

## Data Contract: [dataset]

### Owner
- Team: [team]
- Contact: [@person]

### Schema
| Field | Type | Description |
|-------|------|-------------|
| [field] | [type] | [description] |

### SLA
- Freshness: [requirement]
- Availability: [requirement]
- Quality: [requirements]

### Change Policy
[How changes are communicated]

Pipeline monitoring

MetricTrack
Run statusSuccess/fail
Run durationTime trend
Data volumeRow counts
FreshnessLast update

Common data challenges

ChallengeSolution
Late dataMonitoring, alerts
Bad dataQuality checks
Schema driftSchema registry
Pipeline failuresRetry, alerts

Data team coordination

ConsumerCoordination
AnalyticsDashboard data
MLTraining data
ProductFeature data
FinanceReport data

Data incident management

SeverityResponse
Data outageImmediate
Data qualitySame day
PerformanceWithin sprint

Data metrics

MetricTrack
Pipeline success rate% successful
Data freshnessSLA compliance
Quality scoreBy dimension
IncidentsPer period

Best practices

PracticeImplementation
Idempotent pipelinesRerun safely
Data lineageTrack flow
Version schemasHandle changes
Test dataQuality validation