9 min read • Guide 766 of 877
Machine Learning Project Management
Machine learning projects differ from traditional software - experiments fail often, timelines are uncertain, and deployment is complex. GitScrum helps teams manage ML work effectively.
ML Project Phases
Phase Structure
ML PROJECT LIFECYCLE:
┌─────────────────────────────────────────────────────────────┐
│ │
│ PHASE 1: PROBLEM DEFINITION │
│ ───────────────────────────── │
│ Duration: 1-2 weeks │
│ │
│ Tasks: │
│ ☐ Define business problem │
│ ☐ Identify success metrics │
│ ☐ Assess feasibility │
│ ☐ Define MVP scope │
│ │
│ Output: Go/no-go decision, project charter │
│ │
│ ─────────────────────────────────────────────────────────── │
│ │
│ PHASE 2: DATA PREPARATION │
│ ───────────────────────────── │
│ Duration: 2-4 weeks │
│ │
│ Tasks: │
│ ☐ Data collection │
│ ☐ Data exploration │
│ ☐ Feature engineering │
│ ☐ Data pipeline creation │
│ ☐ Train/test split │
│ │
│ Output: Clean dataset, feature set, data pipeline │
│ │
│ ─────────────────────────────────────────────────────────── │
│ │
│ PHASE 3: EXPERIMENTATION │
│ ───────────────────────────── │
│ Duration: 2-6 weeks (timeboxed) │
│ │
│ Tasks: │
│ ☐ Baseline model │
│ ☐ Experiment iterations │
│ ☐ Model selection │
│ ☐ Hyperparameter tuning │
│ │
│ Output: Trained model meeting criteria (or decision to stop)│
│ │
│ ─────────────────────────────────────────────────────────── │
│ │
│ PHASE 4: PRODUCTIONIZATION │
│ ─────────────────────────── │
│ Duration: 2-4 weeks │
│ │
│ Tasks: │
│ ☐ Model serving infrastructure │
│ ☐ Monitoring │
│ ☐ A/B testing setup │
│ ☐ Rollout │
│ │
│ Output: Production model │
│ │
│ ─────────────────────────────────────────────────────────── │
│ │
│ PHASE 5: MAINTENANCE │
│ ────────────────────── │
│ Ongoing │
│ │
│ Tasks: │
│ ☐ Model monitoring │
│ ☐ Drift detection │
│ ☐ Retraining │
│ │
└─────────────────────────────────────────────────────────────┘
Experiment Management
Experiment Tasks
ML EXPERIMENT TASK:
┌─────────────────────────────────────────────────────────────┐
│ │
│ EXPERIMENT STRUCTURE: │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ ML-EXP-05: Test BERT for sentiment classification ││
│ │ ││
│ │ HYPOTHESIS: ││
│ │ Fine-tuned BERT will outperform current rule-based ││
│ │ sentiment by 15%+ in F1 score. ││
│ │ ││
│ │ BASELINE: ││
│ │ Current rule-based: 0.72 F1 ││
│ │ ││
│ │ SUCCESS CRITERIA: ││
│ │ ≥ 0.85 F1 on test set ││
│ │ ││
│ │ TIMEBOX: ││
│ │ 1 week maximum ││
│ │ ││
│ │ APPROACH: ││
│ │ ☐ Fine-tune bert-base-uncased ││
│ │ ☐ Use labeled training set (10K examples) ││
│ │ ☐ 5-fold cross validation ││
│ │ ☐ Compare with baseline ││
│ │ ││
│ │ RESOURCES: ││
│ │ • GPU: 1x V100 ││
│ │ • Training time: ~4 hours ││
│ │ ││
│ │ STOPPING CONDITIONS: ││
│ │ • F1 < 0.75 after 3 epochs → Stop, try different model││
│ │ • Training diverges → Check data, restart ││
│ │ • Time exceeded → Document results, decide next step ││
│ └─────────────────────────────────────────────────────────┘│
│ │
│ EXPERIMENT OUTCOMES: │
│ │
│ ✅ SUCCESS: │
│ Met criteria, proceed to productionization │
│ │
│ ⚠️ PARTIAL: │
│ Some improvement, decide if worth continuing │
│ │
│ ❌ FAILURE: │
│ Below baseline or not worth complexity │
│ → Still valuable! Document learnings │
└─────────────────────────────────────────────────────────────┘
Tracking Results
EXPERIMENT RESULTS DOCUMENTATION:
┌─────────────────────────────────────────────────────────────┐
│ │
│ UPDATE TASK WHEN COMPLETE: │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ ML-EXP-05: Test BERT for sentiment ││
│ │ Status: ✅ Complete ││
│ │ ││
│ │ RESULTS: ││
│ │ ─────────────────────────────────────────────────────── ││
│ │ Model F1 Precision Recall Time ││
│ │ Baseline 0.72 0.70 0.74 - ││
│ │ BERT-base 0.89 0.87 0.91 4.2h ││
│ │ ─────────────────────────────────────────────────────── ││
│ │ ││
│ │ OUTCOME: ✅ Success - exceeded 0.85 target ││
│ │ ││
│ │ LEARNINGS: ││
│ │ • BERT significantly outperformed rule-based ││
│ │ • 10K examples sufficient for this task ││
│ │ • GPU training practical for daily retraining ││
│ │ ││
│ │ NEXT STEPS: ││
│ │ → Create ML-PROD-01 for productionization ││
│ │ ││
│ │ ARTIFACTS: ││
│ │ • MLflow run: [link] ││
│ │ • Model checkpoint: s3://models/bert-sentiment-v1 ││
│ │ • Notebook: experiments/exp-05-bert.ipynb ││
│ └─────────────────────────────────────────────────────────┘│
│ │
│ FAILED EXPERIMENTS ARE VALUABLE: │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ ML-EXP-04: Test simpler logistic regression ││
│ │ Status: ❌ Did not meet criteria ││
│ │ ││
│ │ RESULTS: F1 = 0.68 (below baseline) ││
│ │ ││
│ │ LEARNINGS: ││
│ │ • Bag of words insufficient for nuanced sentiment ││
│ │ • Confirms need for contextual embeddings ││
│ │ ││
│ │ → Informs EXP-05 decision to try BERT ││
│ └─────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────┘
Productionization
From Experiment to Production
ML PRODUCTIONIZATION TASKS:
┌─────────────────────────────────────────────────────────────┐
│ │
│ PRODUCTION EPIC: │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ ML-PROD-01: Deploy sentiment model ││
│ │ ││
│ │ From: ML-EXP-05 (BERT sentiment model) ││
│ │ ││
│ │ Infrastructure: ││
│ │ ☐ ML-PROD-01a: Model serving API ││
│ │ ☐ ML-PROD-01b: Inference optimization ││
│ │ ☐ ML-PROD-01c: Load testing ││
│ │ ││
│ │ Monitoring: ││
│ │ ☐ ML-PROD-01d: Prediction logging ││
│ │ ☐ ML-PROD-01e: Performance dashboards ││
│ │ ☐ ML-PROD-01f: Drift detection ││
│ │ ││
│ │ Rollout: ││
│ │ ☐ ML-PROD-01g: Shadow mode (compare to prod) ││
│ │ ☐ ML-PROD-01h: A/B test setup ││
│ │ ☐ ML-PROD-01i: Gradual rollout ││
│ │ ││
│ │ Documentation: ││
│ │ ☐ ML-PROD-01j: Model card ││
│ │ ☐ ML-PROD-01k: Runbook ││
│ └─────────────────────────────────────────────────────────┘│
│ │
│ MODEL SERVING TASK: │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ ML-PROD-01a: Model serving API ││
│ │ ││
│ │ Endpoint: POST /api/v1/sentiment ││
│ │ ││
│ │ Requirements: ││
│ │ • Latency p99 < 100ms ││
│ │ • Throughput: 1000 req/sec ││
│ │ • Availability: 99.9% ││
│ │ ││
│ │ Implementation: ││
│ │ ☐ TorchServe or TF Serving ││
│ │ ☐ Model quantization for speed ││
│ │ ☐ Batching for efficiency ││
│ │ ☐ Caching layer ││
│ │ ☐ Graceful degradation (fallback to rule-based) ││
│ └─────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────┘
Monitoring and Maintenance
ML Monitoring
MODEL MONITORING TASKS:
┌─────────────────────────────────────────────────────────────┐
│ │
│ ONGOING MONITORING: │
│ │
│ PERFORMANCE METRICS: │
│ • Prediction latency │
│ • Throughput │
│ • Error rate │
│ │
│ MODEL QUALITY: │
│ • Accuracy on labeled samples │
│ • Prediction distribution │
│ • Feature drift │
│ • Label drift │
│ │
│ ─────────────────────────────────────────────────────────── │
│ │
│ DRIFT ALERT TASK: │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ 🔴 ML-ALERT-12: Sentiment model drift detected ││
│ │ ││
│ │ Alert: Prediction distribution shift ││
│ │ Positive predictions: 40% → 65% (past week) ││
│ │ ││
│ │ Possible causes: ││
│ │ • Genuine shift in user sentiment ││
│ │ • Data pipeline issue ││
│ │ • Model degradation ││
│ │ ││
│ │ Investigation: ││
│ │ ☐ Check data pipeline ││
│ │ ☐ Sample and manually label recent predictions ││
│ │ ☐ Compare input feature distributions ││
│ │ ││
│ │ If model issue: ││
│ │ ☐ Retrain with recent data ││
│ │ ☐ A/B test new model ││
│ │ ☐ Roll out if better ││
│ └─────────────────────────────────────────────────────────┘│
│ │
│ RETRAINING SCHEDULE: │
│ │
│ Regular retraining task (monthly): │
│ ☐ Collect new labeled data │
│ ☐ Retrain model │
│ ☐ Evaluate vs production │
│ ☐ Deploy if improved │
└─────────────────────────────────────────────────────────────┘
Team Coordination
ML Team Structure
ML TEAM COORDINATION:
┌─────────────────────────────────────────────────────────────┐
│ │
│ TYPICAL ML PROJECT ROLES: │
│ │
│ Data Scientist: │
│ • Experimentation │
│ • Model development │
│ • Feature engineering │
│ │
│ ML Engineer: │
│ • Productionization │
│ • Model serving │
│ • Pipeline automation │
│ │
│ Data Engineer: │
│ • Data pipelines │
│ • Feature stores │
│ • Data quality │
│ │
│ Product Manager: │
│ • Problem definition │
│ • Success metrics │
│ • Stakeholder coordination │
│ │
│ ─────────────────────────────────────────────────────────── │
│ │
│ HANDOFFS: │
│ │
│ DS → ML Engineer (productionization): │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ Handoff includes: ││
│ │ ☐ Model checkpoint ││
│ │ ☐ Training code ││
│ │ ☐ Preprocessing pipeline ││
│ │ ☐ Performance requirements ││
│ │ ☐ Known limitations ││
│ │ ☐ Test cases ││
│ └─────────────────────────────────────────────────────────┘│
│ │
│ SPRINT BALANCE: │
│ • Mix experiments with productionization │
│ • Don't let experiments starve production work │
│ • Don't let production work block all experimentation │
└─────────────────────────────────────────────────────────────┘