Try free
6 min read Guide 168 of 877

Engineering Intelligence Platform

Engineering intelligence goes beyond simple tracking to provide actionable insights about team performance, project health, and delivery predictability. GitScrum aggregates signals across projects, teams, and sprints to help engineering leaders make data-driven decisions.

Engineering Intelligence Value

Without IntelligenceWith Intelligence
Gut-feel decisionsData-driven choices
Surprise delaysEarly warning signals
Hidden bottlenecksVisible constraints
Unclear capacityAccurate forecasting
Reactive managementProactive leadership

Key Intelligence Areas

Delivery Intelligence

DELIVERY INTELLIGENCE METRICS
═════════════════════════════

VELOCITY:
├── Points/items completed per sprint
├── Trend over last 6 sprints
├── Deviation from average
├── Team comparison (normalized)

PREDICTABILITY:
├── Planned vs. delivered ratio
├── Estimate accuracy
├── Commitment reliability
└── Sprint over/under patterns

CYCLE TIME:
├── Average time from start to done
├── Breakdown by stage (dev, review, etc.)
├── Outliers and root causes
└── Trend direction

THROUGHPUT:
├── Items completed per week
├── Features vs. bugs ratio
├── Size distribution
└── Consistency measure

LEAD TIME:
├── Request to delivery time
├── Queue time visibility
├── Customer-facing metric
└── Improvement opportunities

Team Intelligence

TEAM INTELLIGENCE METRICS
═════════════════════════

WORKLOAD:
├── Points per person
├── WIP per person
├── Overload indicators
└── Distribution balance

COLLABORATION:
├── Review turnaround time
├── Cross-team dependencies
├── Knowledge sharing patterns
└── Pair programming frequency

HEALTH:
├── Sustainable pace indicators
├── Focus time vs. meetings
├── Sprint stress patterns
└── Burnout risk signals

GROWTH:
├── Skill development
├── Knowledge distribution
├── Bus factor improvement
└── Onboarding effectiveness

Project Intelligence

PROJECT INTELLIGENCE METRICS
════════════════════════════

PROGRESS:
├── Burndown/burnup trends
├── Scope change tracking
├── Milestone achievement
└── Release readiness

RISK:
├── Blocked items count
├── Aging work items
├── Dependency status
└── Quality trend

SCOPE:
├── Scope creep detection
├── Feature completeness
├── Technical debt ratio
└── Bug backlog trend

RESOURCE:
├── Capacity utilization
├── Skill coverage
├── External dependency health
└── Tool/infrastructure needs

GitScrum Intelligence Dashboards

Executive Dashboard

EXECUTIVE DASHBOARD
═══════════════════

┌─────────────────────────────────────────────────────────┐
│  Engineering Overview - Q1 2024                        │
├─────────────────────────────────────────────────────────┤
│                                                         │
│  DELIVERY HEALTH          ●●●●○ (4/5)                  │
│  ────────────────────────────────────────               │
│  On Track: 5 projects                                  │
│  At Risk: 1 project (Project Alpha - capacity)         │
│  Delayed: 0 projects                                   │
│                                                         │
│  KEY METRICS                                            │
│  ┌─────────────┬─────────────┬─────────────┐           │
│  │ Velocity    │ Cycle Time  │ Quality     │           │
│  │   +12%      │   -18%      │   -5%       │           │
│  │ vs last Q   │ (improving) │ (fewer bugs)│           │
│  └─────────────┴─────────────┴─────────────┘           │
│                                                         │
│  TEAM CAPACITY                                          │
│  ████████░░░░ 73% allocated                            │
│  Headcount: 24 engineers                               │
│  Available: 2.5 FTE                                    │
│                                                         │
│  UPCOMING MILESTONES                                    │
│  Jan 31: Alpha v2.0 launch ✓ on track                  │
│  Feb 15: Beta API release ⚠ at risk                   │
│  Mar 01: Q1 objectives due ✓ on track                 │
│                                                         │
└─────────────────────────────────────────────────────────┘

Team Dashboard

TEAM INTELLIGENCE DASHBOARD
═══════════════════════════

┌─────────────────────────────────────────────────────────┐
│  Platform Team - Sprint 24                             │
├─────────────────────────────────────────────────────────┤
│                                                         │
│  SPRINT PROGRESS                                        │
│  ████████████░░░░░░ 68% (Day 7 of 10)                 │
│  On track: Yes                                         │
│                                                         │
│  VELOCITY TREND (last 6 sprints)                       │
│     ▁▂▄▃▅▆                                             │
│     28 31 35 33 38 41 pts                              │
│                                                         │
│  CYCLE TIME                                             │
│  Average: 3.2 days (↓0.4 from last sprint)            │
│  Review: 1.1 days (bottleneck: need +1 reviewer)       │
│                                                         │
│  WORKLOAD DISTRIBUTION                                  │
│  Sarah:   ████████░░ 8 pts (balanced)                 │
│  Mike:    ██████████ 10 pts (at limit)                │
│  Alex:    ██████░░░░ 6 pts (has capacity)             │
│  Emily:   █████████░ 9 pts (balanced)                 │
│                                                         │
│  BLOCKERS: 1 item (external API dependency)            │
│  ACTION: Escalated to partner team                     │
│                                                         │
└─────────────────────────────────────────────────────────┘

Forecasting

DELIVERY FORECASTING
════════════════════

MONTE CARLO SIMULATION:
─────────────────────────────────────
Based on last 10 sprints of data:

Project: API Redesign
Remaining: 85 points

Probability of completion by:
├── Feb 15:  25% chance
├── Feb 28:  75% chance (likely)
├── Mar 15:  95% chance (very likely)
└── Mar 31: 100% chance

Recommendation: Plan for Feb 28 delivery
Buffer: Add 2 weeks for unexpected

FACTORS AFFECTING FORECAST:
├── Team has 2 weeks PTO in Feb
├── One dependency not yet resolved
├── Scope may increase 10-15%
└── New team member ramping up

Using Intelligence

Decision Support

INTELLIGENCE-DRIVEN DECISIONS
═════════════════════════════

CAPACITY PLANNING:
├── Historical velocity → future capacity
├── Account for holidays, PTO, ramp-up
├── Identify skill gaps
└── Hire/contractor decisions

PRIORITIZATION:
├── ROI analysis with effort data
├── Opportunity cost visibility
├── Technical debt impact
└── Quality vs. speed trade-offs

RISK MANAGEMENT:
├── Early warning indicators
├── Dependency tracking
├── Team health monitoring
└── Scope change alerts

PROCESS IMPROVEMENT:
├── Bottleneck identification
├── Experiment measurement
├── Before/after comparison
└── Continuous optimization

Action Triggers

AUTOMATED ALERTS AND ACTIONS
════════════════════════════

CONFIGURE ALERTS FOR:

DELIVERY RISK:
├── Sprint burn trending wrong
├── Too many items blocked
├── Velocity drop >20%
└── → Notify manager, escalate

TEAM HEALTH:
├── WIP limits exceeded
├── Review queue growing
├── One person overloaded
└── → Suggest redistribution

QUALITY:
├── Bug density increasing
├── Production incidents up
├── Test coverage dropping
└── → Flag for tech lead

PROCESS:
├── Cycle time increasing
├── Predictability declining
├── Scope creep detected
└── → Schedule retrospective

Best Practices

For Engineering Intelligence

  1. Start simple — Few metrics, well understood
  2. Trust the trends — Not single data points
  3. Context matters — Numbers need interpretation
  4. Team involvement — Not surveillance
  5. Action-oriented — Insight without action is waste

Anti-Patterns

INTELLIGENCE MISTAKES:
✗ Too many metrics (vanity)
✗ Individual productivity tracking
✗ Gaming-prone measures
✗ Data without action
✗ Ignoring qualitative signals
✗ Comparing teams directly
✗ Short-term focus only
✗ Surveillance culture