6 min read • Guide 168 of 877
Engineering Intelligence Platform
Engineering intelligence goes beyond simple tracking to provide actionable insights about team performance, project health, and delivery predictability. GitScrum aggregates signals across projects, teams, and sprints to help engineering leaders make data-driven decisions.
Engineering Intelligence Value
| Without Intelligence | With Intelligence |
|---|---|
| Gut-feel decisions | Data-driven choices |
| Surprise delays | Early warning signals |
| Hidden bottlenecks | Visible constraints |
| Unclear capacity | Accurate forecasting |
| Reactive management | Proactive leadership |
Key Intelligence Areas
Delivery Intelligence
DELIVERY INTELLIGENCE METRICS
═════════════════════════════
VELOCITY:
├── Points/items completed per sprint
├── Trend over last 6 sprints
├── Deviation from average
├── Team comparison (normalized)
PREDICTABILITY:
├── Planned vs. delivered ratio
├── Estimate accuracy
├── Commitment reliability
└── Sprint over/under patterns
CYCLE TIME:
├── Average time from start to done
├── Breakdown by stage (dev, review, etc.)
├── Outliers and root causes
└── Trend direction
THROUGHPUT:
├── Items completed per week
├── Features vs. bugs ratio
├── Size distribution
└── Consistency measure
LEAD TIME:
├── Request to delivery time
├── Queue time visibility
├── Customer-facing metric
└── Improvement opportunities
Team Intelligence
TEAM INTELLIGENCE METRICS
═════════════════════════
WORKLOAD:
├── Points per person
├── WIP per person
├── Overload indicators
└── Distribution balance
COLLABORATION:
├── Review turnaround time
├── Cross-team dependencies
├── Knowledge sharing patterns
└── Pair programming frequency
HEALTH:
├── Sustainable pace indicators
├── Focus time vs. meetings
├── Sprint stress patterns
└── Burnout risk signals
GROWTH:
├── Skill development
├── Knowledge distribution
├── Bus factor improvement
└── Onboarding effectiveness
Project Intelligence
PROJECT INTELLIGENCE METRICS
════════════════════════════
PROGRESS:
├── Burndown/burnup trends
├── Scope change tracking
├── Milestone achievement
└── Release readiness
RISK:
├── Blocked items count
├── Aging work items
├── Dependency status
└── Quality trend
SCOPE:
├── Scope creep detection
├── Feature completeness
├── Technical debt ratio
└── Bug backlog trend
RESOURCE:
├── Capacity utilization
├── Skill coverage
├── External dependency health
└── Tool/infrastructure needs
GitScrum Intelligence Dashboards
Executive Dashboard
EXECUTIVE DASHBOARD
═══════════════════
┌─────────────────────────────────────────────────────────┐
│ Engineering Overview - Q1 2024 │
├─────────────────────────────────────────────────────────┤
│ │
│ DELIVERY HEALTH ●●●●○ (4/5) │
│ ──────────────────────────────────────── │
│ On Track: 5 projects │
│ At Risk: 1 project (Project Alpha - capacity) │
│ Delayed: 0 projects │
│ │
│ KEY METRICS │
│ ┌─────────────┬─────────────┬─────────────┐ │
│ │ Velocity │ Cycle Time │ Quality │ │
│ │ +12% │ -18% │ -5% │ │
│ │ vs last Q │ (improving) │ (fewer bugs)│ │
│ └─────────────┴─────────────┴─────────────┘ │
│ │
│ TEAM CAPACITY │
│ ████████░░░░ 73% allocated │
│ Headcount: 24 engineers │
│ Available: 2.5 FTE │
│ │
│ UPCOMING MILESTONES │
│ Jan 31: Alpha v2.0 launch ✓ on track │
│ Feb 15: Beta API release ⚠ at risk │
│ Mar 01: Q1 objectives due ✓ on track │
│ │
└─────────────────────────────────────────────────────────┘
Team Dashboard
TEAM INTELLIGENCE DASHBOARD
═══════════════════════════
┌─────────────────────────────────────────────────────────┐
│ Platform Team - Sprint 24 │
├─────────────────────────────────────────────────────────┤
│ │
│ SPRINT PROGRESS │
│ ████████████░░░░░░ 68% (Day 7 of 10) │
│ On track: Yes │
│ │
│ VELOCITY TREND (last 6 sprints) │
│ ▁▂▄▃▅▆ │
│ 28 31 35 33 38 41 pts │
│ │
│ CYCLE TIME │
│ Average: 3.2 days (↓0.4 from last sprint) │
│ Review: 1.1 days (bottleneck: need +1 reviewer) │
│ │
│ WORKLOAD DISTRIBUTION │
│ Sarah: ████████░░ 8 pts (balanced) │
│ Mike: ██████████ 10 pts (at limit) │
│ Alex: ██████░░░░ 6 pts (has capacity) │
│ Emily: █████████░ 9 pts (balanced) │
│ │
│ BLOCKERS: 1 item (external API dependency) │
│ ACTION: Escalated to partner team │
│ │
└─────────────────────────────────────────────────────────┘
Forecasting
DELIVERY FORECASTING
════════════════════
MONTE CARLO SIMULATION:
─────────────────────────────────────
Based on last 10 sprints of data:
Project: API Redesign
Remaining: 85 points
Probability of completion by:
├── Feb 15: 25% chance
├── Feb 28: 75% chance (likely)
├── Mar 15: 95% chance (very likely)
└── Mar 31: 100% chance
Recommendation: Plan for Feb 28 delivery
Buffer: Add 2 weeks for unexpected
FACTORS AFFECTING FORECAST:
├── Team has 2 weeks PTO in Feb
├── One dependency not yet resolved
├── Scope may increase 10-15%
└── New team member ramping up
Using Intelligence
Decision Support
INTELLIGENCE-DRIVEN DECISIONS
═════════════════════════════
CAPACITY PLANNING:
├── Historical velocity → future capacity
├── Account for holidays, PTO, ramp-up
├── Identify skill gaps
└── Hire/contractor decisions
PRIORITIZATION:
├── ROI analysis with effort data
├── Opportunity cost visibility
├── Technical debt impact
└── Quality vs. speed trade-offs
RISK MANAGEMENT:
├── Early warning indicators
├── Dependency tracking
├── Team health monitoring
└── Scope change alerts
PROCESS IMPROVEMENT:
├── Bottleneck identification
├── Experiment measurement
├── Before/after comparison
└── Continuous optimization
Action Triggers
AUTOMATED ALERTS AND ACTIONS
════════════════════════════
CONFIGURE ALERTS FOR:
DELIVERY RISK:
├── Sprint burn trending wrong
├── Too many items blocked
├── Velocity drop >20%
└── → Notify manager, escalate
TEAM HEALTH:
├── WIP limits exceeded
├── Review queue growing
├── One person overloaded
└── → Suggest redistribution
QUALITY:
├── Bug density increasing
├── Production incidents up
├── Test coverage dropping
└── → Flag for tech lead
PROCESS:
├── Cycle time increasing
├── Predictability declining
├── Scope creep detected
└── → Schedule retrospective
Best Practices
For Engineering Intelligence
- Start simple — Few metrics, well understood
- Trust the trends — Not single data points
- Context matters — Numbers need interpretation
- Team involvement — Not surveillance
- Action-oriented — Insight without action is waste
Anti-Patterns
INTELLIGENCE MISTAKES:
✗ Too many metrics (vanity)
✗ Individual productivity tracking
✗ Gaming-prone measures
✗ Data without action
✗ Ignoring qualitative signals
✗ Comparing teams directly
✗ Short-term focus only
✗ Surveillance culture